# **SURE: SUrvey REcipes for building reliable** and robust deep networks

Yuting Li, Yingyi Chen, Xuanlong Yu, Dexiong Chen<sup>+</sup>, Xi Shen<sup>+</sup>

### **Motivation and contribution**

### **Motivation**:

Model robustness in handling complex real-world data challenges, such as long-tailed classification, learning with noisy labels and data corruptions.

### **Contribution:**

1. Simple and effective approach **SURE** for building reliable and robutst deep networks.

2. SOTA performance in **failure prediction** across various datasets and model architectures.

3. Competitive results to **SOTA** specialized methods in realworld scenarios : long-tailed distribution, label noise and data corruption.

# Experiments

Visual results of an example from CIFAR100-LT IF=10



SURE leads to clearly better confidence separation than MSP and FMFP.

## **Failure prediction under distribution shift (CIFAR10-C)**





SURE

Correct Prediction

Misclassifications

0.6

SURE enhances the failure prediction performance across a spectrum of corruptions





# Learning with noisy labels: Animal-10N dataset (left) and Food-101N dataset (right)

| Methods  | CE   | SELFIE | PLC  | NCT  | Dynamic Loss | SSR+ | Jigsaw-ViT * | SUDE | Mathada  | CE   | CleanNet | MWNet | SMP  | NRank | PLC  | WarPI | Jigsaw-ViT * |      |  |
|----------|------|--------|------|------|--------------|------|--------------|------|----------|------|----------|-------|------|-------|------|-------|--------------|------|--|
|          | [78] | [65]   | [78] | [6]  | [37]         | [17] | [7]          | SURE | Methods  | [78] | [42]     | [63]  | [27] | [62]  | [78] | [67]  | [7]          | SUKE |  |
| Acc. (%) | 79.4 | 81.8   | 83.4 | 84.1 | 86.5         | 88.5 | 89.0         | 89.0 | Acc. (%) | 81.7 | 83.5     | 84.7  | 85.1 | 85.2  | 85.3 | 85.9  | 86.7         | 88.0 |  |

# **Failure prediction**

|                      | 1                | 1                                |                                   |                  |                                      | 1                            |                                    |                                  |                                      | 1                                |                                      |                          |                                      |                                                               |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
|----------------------|------------------|----------------------------------|-----------------------------------|------------------|--------------------------------------|------------------------------|------------------------------------|----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|--------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------|------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|-------|--|--|--|
| Backbones            | Methods          |                                  | CIFAR-10 [40]                     |                  |                                      | CIFAR-100 [40]               |                                    |                                  | Tiny-ImageNet [41]                   |                                  |                                      |                          | Mathada                              | CIFAR10-LT [12]                                               |                                 |                  | CIFAR100-LT [12] |                                                                                                                 |                   |       |  |  |  |
|                      | MSD [31]         | Acc. $\uparrow$                  | $\frac{\text{AURC}}{6.78\pm0.33}$ | $AUROC \uparrow$ | $\frac{\text{FPR95}}{38,73\pm2,80}$  | Acc. ↑                       | AURC $\downarrow$                  | AUROC ↑                          | $FPR95 \downarrow$                   | Acc. $\uparrow$                  | $AURC\downarrow$ 136 50±1 08         | AUROC ↑                  | $FPR95 \downarrow$                   | Methods                                                       | IF=100                          | IF=50            | IF=10            | IF=100                                                                                                          | IF=50             | IF=10 |  |  |  |
| ResNet-18 [28]       | RegMixup [59]    | 94.89±0.20<br>95.69+0.13         | $4.74 \pm 0.33$                   | 92.20±0.33       | $34.26 \pm 1.98$                     | 77.90+0.37                   | $59.23 \pm 1.65$                   | 87.61+0.13                       | $58.65 \pm 0.43$                     | $66.36 \pm 0.39$                 | $130.30 \pm 1.08$<br>115.08+1.98     | 85.02±0.33               | $62.54 \pm 0.04$                     | CE                                                            | 70.40                           | 74.80            | 86.40            | 38 30                                                                                                           | <i>A</i> 3 90     | 55 70 |  |  |  |
|                      | CRL [54]         | 94.85±0.10                       | 5.09±0.28                         | 93.64±0.48       | 35.33±1.73                           | 76.42±0.21                   | 62.78±0.21                         | 88.07±0.17                       | 59.02±0.39                           | 65.50±0.03                       | 117.46±0.56                          | 87.01±0.13               | 61.15±0.07                           |                                                               | 70.40                           |                  | 07.1             | 20.54                                                                                                           | <del>4</del> 3.70 | 59.00 |  |  |  |
|                      | SAM [19]         | 95.30±0.25                       | 3.97±0.33                         | 94.53±0.31       | 31.13±3.62                           | 76.60±0.21                   | 62.97±1.02                         | 87.72±0.10                       | 59.35±0.87                           | 64.95±0.21                       | 120.04±2.11                          | 87.19±0.57               | 59.98±0.55                           |                                                               | /3.06                           | 11.82            | 87.1             | 39.54                                                                                                           | 54.99             | 58.02 |  |  |  |
|                      | SWA [35]         | 95.38±0.09                       | 4.00±0.21                         | 94.40±0.50       | 35.70±1.44                           | 77.65±0.19                   | 55.87±0.32                         | 88.55±0.25                       | 60.43±1.90                           | 68.09±0.19                       | 102.11±0.51                          | 87.27±0.15               | 60.63±1.38                           | CB-Focal [12]                                                 | 74.57                           | 79.27            | 87.10            | 39.60                                                                                                           | 45.17             | 57.99 |  |  |  |
|                      | FMFP [81]        | 95.60±0.09                       | 3.56±0.06                         | 94.74±0.10       | 33.49±0.33                           | 77.82±0.08                   | 55.03±0.52                         | 88.59±0.07                       | 59.79±0.31                           | 68.18±0.42                       | 100.93±2.12                          | 87.45±0.05               | 60.18±1.26                           | LDAM-DRW [4]                                                  | 77.03                           | 81.03            | 88.16            | 42.04                                                                                                           | 46.62             | 58.71 |  |  |  |
|                      | SURE             | 96.14±0.16                       | 2.9/±0.13                         | 95.08±0.04       | 28.64±0.66                           | 80.49±0.18                   | 45.81±0.15                         | 88.73±0.24                       | 58.91±0.58                           | 69.55±0.10                       | 93.46±0.82                           | 87.67±0.12               | $60.13 \pm 0.32$                     | SSP [73]                                                      | 77 83                           | 82.13            | 88 53            | 43 43                                                                                                           | 47 11             | 58 91 |  |  |  |
| VGG [64]             | MSP [31]         | $93.30\pm0.21$                   | $10.41\pm0.33$                    | 90.71±0.04       | $44.66 \pm 1.81$                     | $72.43 \pm 0.42$             | 91.40±1.95                         | 85.69±0.90                       | $64.41\pm1.66$                       | $59.52 \pm 0.62$                 | $156.45 \pm 2.51$                    | 86.33±0.63               | 63.79±0.95                           |                                                               | 70.82                           | 02.13            | 00.55            | 10.56                                                                                                           | 47.11             | 50.12 |  |  |  |
|                      | CRI [54]         | $94.11\pm0.28$<br>93.42+0.09     | $9.89 \pm 0.81$<br>7.61 + 0.44    | 89.90±0.26       | $39.95 \pm 1.58$<br>39.66+2.83       | $73.31\pm0.18$<br>72.63+0.27 | $83.98\pm1.03$<br>$80.94\pm0.47$   | $80.33 \pm 0.32$<br>87 37 ± 0.28 | $61.70 \pm 1.83$<br>$61.96 \pm 0.77$ | $63.04\pm0.37$<br>$60.20\pm0.36$ | $140.72\pm2.39$<br>$146.76\pm1.42$   | 83.60±0.39<br>87.42+0.28 | 59.00±1.27                           | BBIN [80]                                                     | 19.82                           | 81.18            | 88.32            | 42.30                                                                                                           | 47.02             | 59.12 |  |  |  |
|                      | SAM [19]         | $94.11\pm0.06$                   | $5.97 \pm 0.08$                   | 93.68±0.13       | 37.21±2.92                           | 73.33±0.36                   | 77.44±0.75                         | 87.42±0.33                       | $63.19\pm0.58$                       | $61.24 \pm 0.07$                 | $140.70\pm1.42$<br>$142.54\pm1.04$   | 86.82±0.25               | $62.93 \pm 1.12$                     | Casual model [69]                                             | 80.60                           | 83.60            | 88.50            | 44.10                                                                                                           | 50.30             | 59.60 |  |  |  |
|                      | SWA [35]         | 93.76±0.25                       | 6.64±0.24                         | 93.43±0.16       | 40.44±1.27                           | 73.98±0.16                   | 74.23±0.58                         | 87.30±0.14                       | 62.89±1.80                           | 62.48±0.19                       | 137.01±0.71                          | 86.29±0.16               | 62.15±1.64                           | MetaSAug-LDAM [45]                                            | 80.66                           | 84.34            | 89.68            | 48.01                                                                                                           | 52.27             | 61.28 |  |  |  |
|                      | FMFP [81]        | 94.26±0.23                       | 5.89±0.16                         | 93.46±0.26       | 40.67±3.14                           | 74.77±0.31                   | 70.07±1.26                         | 87.58±0.19                       | 60.98±1.16                           | 62.95±0.16                       | 134.04±1.42                          | 86.36±0.12               | 61.71±1.08                           | Hybrid-SC [71]                                                | 81 40                           | 85.36            | 91.12            | 46.72                                                                                                           | 51.87             | 63.05 |  |  |  |
|                      | SURE             | 95.00±0.11                       | 4.98±0.24                         | 93.79±0.62       | 35.92±2.95                           | 76.51±0.07                   | 65.25±0.17                         | 87.59±0.07                       | 60.27±0.60                           | 63.75±0.11                       | 131.40±0.28                          | 86.12±0.19               | 63.04±1.05                           |                                                               | 82.40                           | 85.17            | 80.70            | 18.72                                                                                                           | 52 71             | 62.01 |  |  |  |
| DenseNet [34]        | MSP [31]         | 94.72±0.23                       | 5.94±0.23                         | 93.00±0.45       | 37.00±0.31                           | 75.14±0.07                   | 74.68±0.32                         | 86.22±0.22                       | 62.79±0.80                           | 57.90±0.25                       | $180.08 \pm 2.52$                    | 83.65±0.29               | 68.61±0.37                           |                                                               | 02.40<br>0 <b>2</b> .0 <i>5</i> | 03.17            | 09.70            | 40.21                                                                                                           | 52.71             | 02.01 |  |  |  |
|                      | RegMixup [59]    | 95.13±0.22                       | 6.03±0.50                         | 92.20±0.80       | 38.63±1.63                           | 77.29±0.16                   | 63.96±1.15                         | 86.57±0.07                       | 63.76±1.10                           | 61.96±0.09                       | 147.22±1.57                          | 84.91±0.17               | 65.92±0.40                           | Dynamic Loss [37]                                             | 82.95                           | 88.30            | 91.24            | 50.14                                                                                                           | 54.51             | 63.99 |  |  |  |
|                      | CKL [54]         | $94.79\pm0.02$<br>05.31±0.10     | $5.38 \pm 0.42$                   | $93.22 \pm 0.61$ | $37.34\pm2.73$<br>$33.33\pm1.27$     | 76.09±0.06                   | $65.96 \pm 0.62$<br>57.20 \pm 0.73 | $8/.41\pm0.11$<br>86.00±0.23     | $60.67 \pm 0.72$<br>$61.42 \pm 0.74$ | $58.80\pm0.56$<br>60.40±0.31     | $169.44\pm3.74$<br>158.04±3.86       | 84.49±0.04<br>84.30±0.57 | $66.05 \pm 0.60$                     | BCL [83]                                                      | 84.32                           | 87.24            | 91.12            | 51.93                                                                                                           | 56.59             | 64.87 |  |  |  |
|                      | SWA [35]         | 95.31±0.10<br>94.86±0.09         | $4.23\pm0.17$<br>$4.65\pm0.18$    | 94.27+0.27       | $35.78 \pm 4.61$                     | 78.17±0.26                   | 57.20±0.73                         | 80.99±0.23<br>87.23+0.22         | $63.33\pm0.63$                       | $60.74 \pm 0.31$                 | $158.94\pm 3.80$<br>$159.68\pm 3.12$ | 83.83±0.07               | $68.03\pm0.75$                       | GLMC [16]                                                     | 87.75                           | 90.18            | 94.04            | 55.88                                                                                                           | 61.08             | 70.74 |  |  |  |
|                      | FMFP [81]        | 95.07±0.15                       | 4.11±0.19                         | 94.74±0.06       | 34.67±0.48                           | 78.33±0.40                   | 54.88±1.62                         | 87.92±0.46                       | $60.52 \pm 1.12$                     | 61.18±0.72                       | 154.98±3.72                          | 84.29±0.26               | 66.66±1.21                           | SUPF                                                          | 83.78                           | 87.72            | 03 73            | 51.60                                                                                                           | 58 57             | 71 13 |  |  |  |
|                      | OpenMix [82]§    | 95.51±0.23                       | 4.68±0.72                         | 93.57±0.81       | 33.57±3.70                           | 78.97±0.31                   | 53.83±0.93                         | 87.45±0.18                       | 62.22±1.15                           | -                                | -                                    | -                        | -                                    |                                                               | 03.20                           | 07.72            | 93.73            | 51.00                                                                                                           | 50.57             | 71.13 |  |  |  |
|                      | SURE             | 95.57±0.06                       | 3.51±0.09                         | 94.91±0.25       | 29.52±0.56                           | 80.02±0.13                   | 46.69±0.59                         | 88.78±0.26                       | 58.37±0.39                           | 62.61±0.18                       | 142.59±2.16                          | 84.31±0.42               | 65.39±2.12                           | GLMC + MaxNorm [1] $ $                                        | 87.57                           | 90.22            | 94.03            | 57.11                                                                                                           | 62.32             | 72.33 |  |  |  |
|                      | MSP [31]         | 95.71±0.17                       | 5.90±0.89                         | 92.19±0.82       | 35.95±3.75                           | 79.15±0.19                   | 53.02±0.89                         | 88.21±0.06                       | 59.46±1.23                           | 67.52±0.18                       | 107.97±0.80                          | 86.78±0.20               | 61.68±0.99                           | SURE + re-weighting                                           | 86.93                           | 90.22            | 94.96            | 57.34                                                                                                           | 63.13             | 73.24 |  |  |  |
|                      | RegMixup [59]    | 97.03±0.04                       | 3.47±0.26                         | 93.10±0.56       | 26.16±1.17                           | 82.14±0.47                   | 47.01±2.12                         | 87.70±0.17                       | 55.24±1.19                           | 69.63±0.09                       | 95.96±0.21                           | 87.38±0.21               | 59.09±0.75                           |                                                               |                                 | 1                |                  |                                                                                                                 |                   |       |  |  |  |
|                      | CRL [54]         | 95.87±0.08                       | $3.85\pm0.20$                     | 94.10±0.06       | 32.73±1.22                           | 80.10±0.28                   | 47.99±1.08                         | 88.43±0.34                       | 59.44±1.45                           | 69.00±0.22                       | 97.46±0.90                           | 87.42±0.23               | 61.02±1.71                           | SURE achieves SOTA performance under long_tailed distribution |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
| w kinet [/o]         | SAM [19]         | $96.4/\pm0.11$<br>$94.86\pm0.00$ | $2.91\pm0.38$                     | 94.79 $\pm$ 0.29 | $28.05 \pm 1.50$<br>$35.78 \pm 4.61$ | $80.67\pm0.31$<br>81.31±0.33 | $44.93 \pm 0.87$                   | $89.01 \pm 0.31$<br>89.30±0.16   | $56.60 \pm 1.30$<br>57 57 ± 1.07     | $69.80\pm0.37$                   | $93.66\pm 2.03$<br>84.07±0.12        | 87.49±0.30               | $60.44 \pm 1.19$<br>$60.00 \pm 2.42$ |                                                               |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
|                      | FMFP [81]        | 96.47+0.12                       | 2.33+0.08                         | 95.73+0.01       | 26.68+2.62                           | 81.66+0.12                   | 39.60+0.15                         | 89.51+0.10                       | 56.41+1.44                           | 71.62+0.04                       | 83.04+0.16                           | 87.78+0.03               | 60.09+0.83                           | JUNE demetes June perjoinnunce ander iong-tailea aistin       |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
|                      | OpenMix $[82]$ § | 97.16±0.10                       | $2.32\pm0.15$                     | 94.81±0.34       | 22.08±1.86                           | 82.63±0.06                   | 39.61±0.54                         | 89.06±0.11                       | 55.00±1.29                           | -                                | -                                    | -                        | -                                    |                                                               |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
|                      | SURE             | 97.02±0.20                       | 1.79±0.16                         | 96.18±0.01       | 19.53±1.23                           | 83.71±0.10                   | 32.10±0.28                         | 90.33±0.18                       | 54.34±0.29                           | 73.34±0.36                       | 74.11±0.97                           | 88.23±0.31               | 58.17±1.50                           |                                                               | Dan                             | or               |                  | Codor                                                                                                           |                   |       |  |  |  |
|                      | MSP [31]         | 98.28±0.08                       | 0.97±0.02                         | 95.76±0.28       | 20.47±5.38                           | 89.71±0.03                   | 17.66±0.56                         | 90.40±0.25                       | 50.99±0.61                           | -                                | -                                    | -                        | -                                    |                                                               | гар                             | er.              |                  | coue.                                                                                                           |                   |       |  |  |  |
|                      | RegMixup [59]    | 98.90±0.04                       | 0.89±0.05                         | 94.30±0.25       | 24.98±3.87                           | 90.79±0.11                   | 15.38±0.51                         | 90.34±0.33                       | 52.01±1.76                           | -                                | -                                    | -                        | -                                    |                                                               |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
|                      | CRL [54]         | 98.27±0.04                       | 0.99±0.11                         | 95.85±0.44       | 19.65±2.51                           | 89.74±0.16                   | 17.61±0.71                         | 90.30±0.18                       | 51.58±0.23                           | -                                | -                                    | -                        | -                                    |                                                               |                                 |                  |                  |                                                                                                                 |                   |       |  |  |  |
| <b>DeiT-B</b> * [70] | SAM [19]         | 98.62±0.10                       | 0.58±0.09                         | 96.89±0.34       | 15.74±1.71                           | 90.43±0.17                   | 15.29±0.19                         | 90.75±0.15                       | 50.02±1.52                           | -                                | -                                    | -                        | -                                    |                                                               |                                 | الكالهي          |                  | in the second | 5 m 📕             |       |  |  |  |
|                      | 5WA [35]         | 98.44±0.07                       | $0.82\pm0.03$                     | 96.11±0.20       | $1/./8\pm 3.23$<br>16 17±0 55        | 90.1/ $\pm$ 0.34             | $15.3/\pm0.44$                     | 90.80±0.38                       | $50.64 \pm 3.37$                     | -                                | -                                    |                          | -                                    |                                                               | (2-100)                         |                  |                  | - <u>19</u> 000                                                                                                 |                   |       |  |  |  |
|                      |                  | 98.92+0 07                       | 0.40±0.02                         | 94 37+0 60       | 2752+311                             | 90.35±0.13<br>91.18+0.01     | 14.30±0.18                         | 91.13±0.32<br>90.85+0.05         | <b>48.81+0.30</b>                    |                                  | _                                    |                          |                                      |                                                               | 17-60                           | / <b>"</b> א צ ו |                  |                                                                                                                 | 5¥ 🔳              |       |  |  |  |
|                      | JUNE             | JO.J Z.L. 0.07                   | 0.00±0.00                         |                  |                                      | J1.10±0.01                   | 13.17±0.27                         | J0.05±0.05                       | -0.01±0.37                           |                                  | _                                    |                          | _                                    |                                                               |                                 |                  |                  |                                                                                                                 | 210 🗖             |       |  |  |  |

<sup>§</sup> reports the results given by models training on extra outliers and all the training data on CIFAR10 [40] CIFAR100 [40] \* reports the results given by finetuning ImageNet [14] pre-trained DeiT-B [70] for 50 epochs

### SURE consistently outperforms other methods across various backbones and all evaluated metrics

SURE achieves **SOTA** performance on **learning with noisy label task** without any task-specific adjustments

# **Long-tailed classification**



